Anurag Singh¹, Siu Lun Chau² and Krikamol Muandet¹

¹Rational Intelligence Lab, CISPA Helmholtz Center for Information Security, Saarbrucken Germany

²Nanyang Technological University, Singapore

Rational Intelligence Lab in CISPA

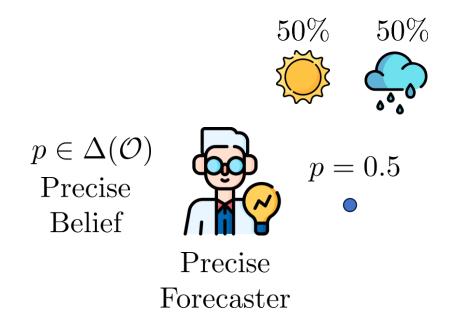
Krikamol Muandet (PI)

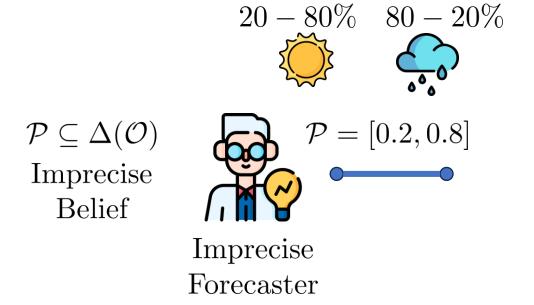
Siu Lun Chau Moved to NTU and recruiting!

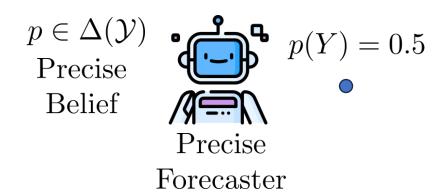
Rational Intelligence Lab

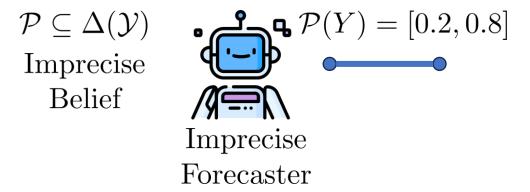
CISPA Helhmholtz Center for Information Security, Saarbrucken

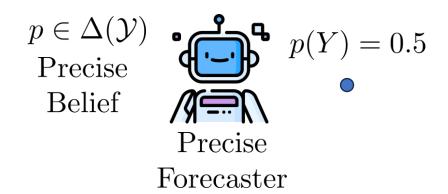
Come visit us in Saarbrücken!

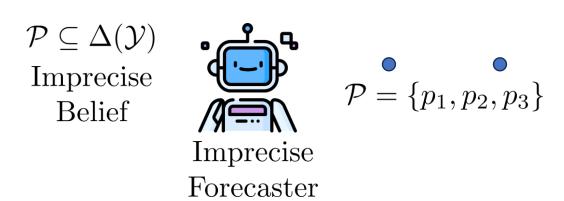


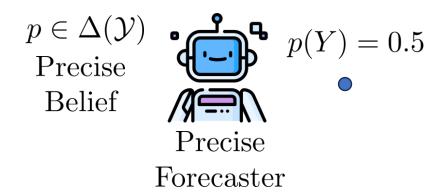


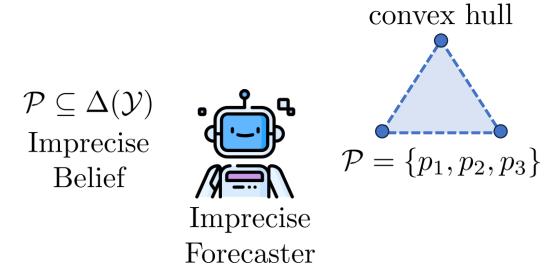




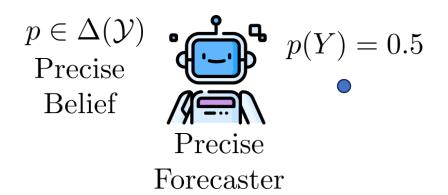


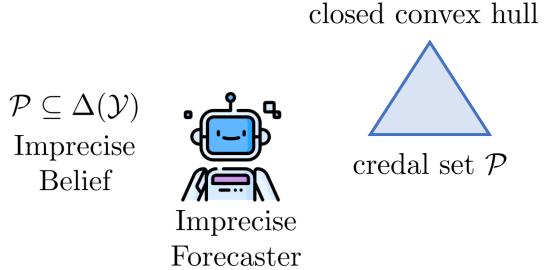






Credal set of an imprecise forecast

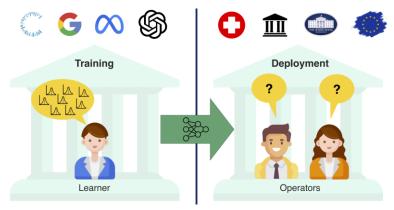




Why do we care about credal sets?

Can we train predictors that generalise for all downstream decision makers?

Yes, with a credal set of models.



Institutional Separation

Domain Generalisation via Imprecise Learning

Anurag Singh ¹ Siu Lun Chau ¹ Shahine Bouabid ² Krikamol Muandet ¹

Abstract

Out-of-distribution (OOD) generalisation is challenging because it involves not only learning from empirical data, but also deciding among various notions of generalisation, e.g., optimising the

(LLM) that surpass human-level generalisation capabilities in specific domains.

Despite notable achievements, these systems may catastrophically fail when operated on out-of-domain (OOD) data because theoretical guarantees for their generalisation

Appeared in ICML 2024 as spotlight

Abstracting the same question

Wait....

Was this not impossible?

The impossibility is only for the real-valued scoring rules! Ours is random

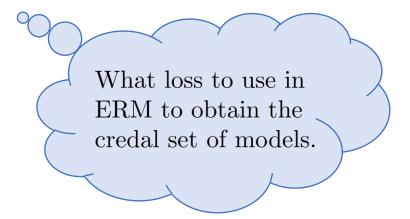
Truthful Elicitation of Imprecise Forecasts

Anurag Singh

Siu Lun Chau²

Krikamol Muandet¹

¹Rational Intelligence Lab, CISPA Helmholtz Center for Information Security, Saarbrücken, Germany ²College of Computing & Data Science, Nanyang Technological University, Singapore



Abstracting the same question

Wait....

Was this not impossible?

The impossibility is only for the real-valued scoring rules! Ours is random

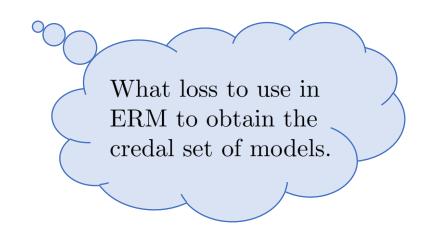
Truthful Elicitation of Imprecise Forecasts

Anurag Singh¹

Siu Lun Chau²

Krikamol Muandet¹

¹Rational Intelligence Lab, CISPA Helmholtz Center for Information Security, Saarbrücken, Germany ²College of Computing & Data Science, Nanyang Technological University, Singapore



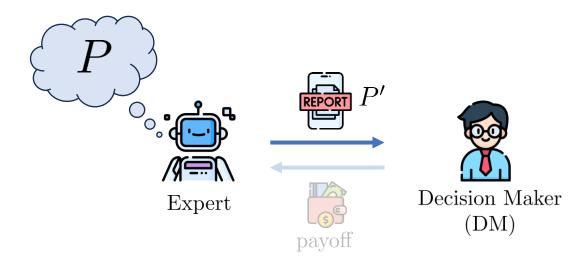
Our Contributions:

Formalise the role of decision maker in imprecise forecast elicitation.

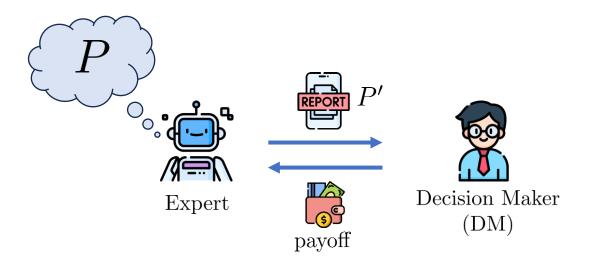
Circumvent prior impossibility results to propose a **strictly proper** randomised scoring rule!

Bonus: Connection to social choice theory

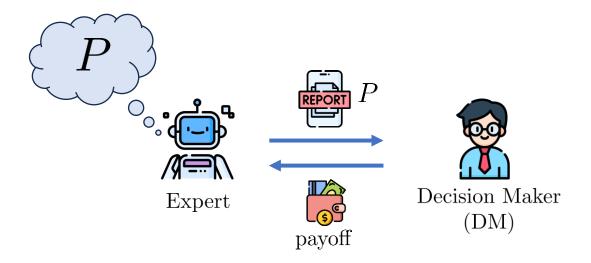
What is Elicitation



What is Elicitation



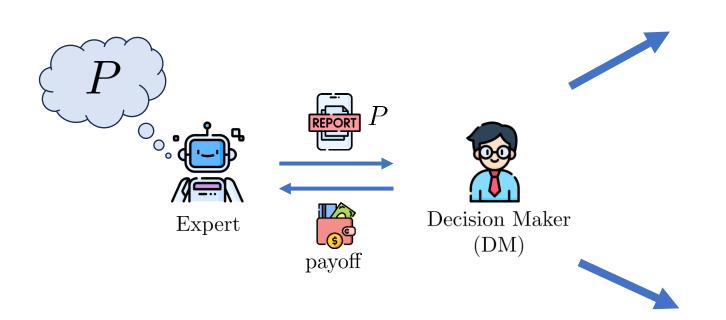
What is Elicitation

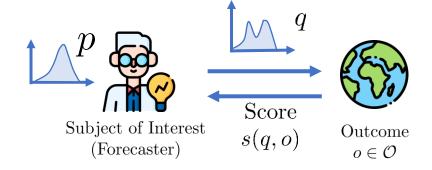


A payoff mechanism performs **truthful** elicitation if it can incentivise the expert to report their true belief.

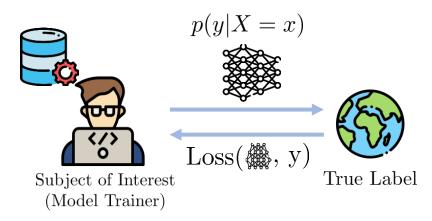
... In other words, speaking truth is dominant strategy for expert.

Applications of truthful elicitation

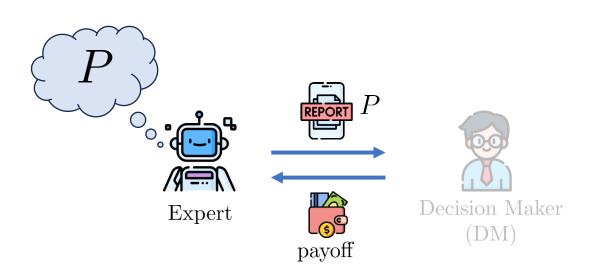




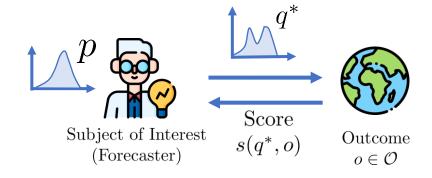
Statistics: Assessment of Probabilities



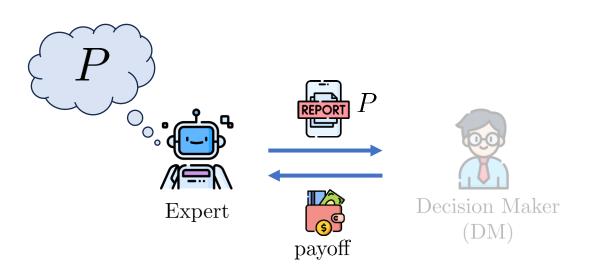
ML: Empirical Risk Minimisation



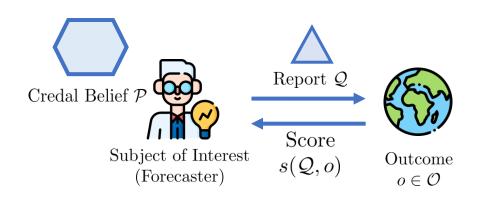
$$\mathbb{E}_{o \sim p}[s(q^*, o)] \qquad \begin{array}{c} q^* \succeq_p q_2 \succeq_p \dots \\ \succeq_p \text{ is complete} \end{array}$$

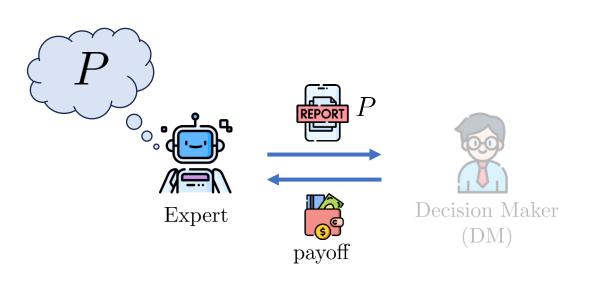


Elicitation of precise forecasts ignores the DM!

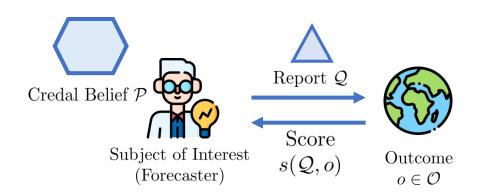


$$\{\mathbb{E}_{o\sim p}[s(\mathcal{Q}, o)]\}_{p\in\mathcal{P}} \quad \begin{array}{c} ??? \\ Q \succeq_{\mathcal{P}} Q' \\ \succeq_{\mathcal{P}} \text{ is incomplete} \end{array}$$

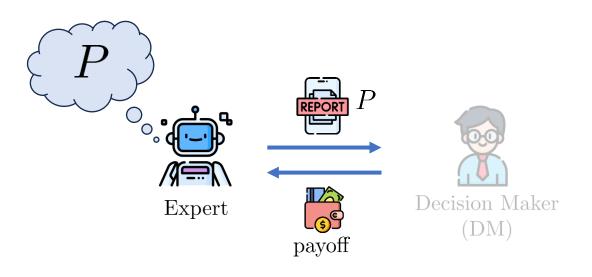




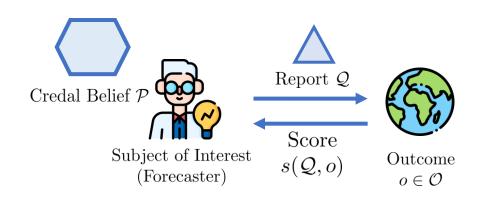
$$\{\mathbb{E}_{o\sim p}[s(\mathcal{Q}, o)]\}_{p\in\mathcal{P}} \quad \begin{array}{c} ???\\ Q \succeq_{\mathcal{P}} Q'\\ \succeq_{\mathcal{P}} \text{ is incomplete} \end{array}$$



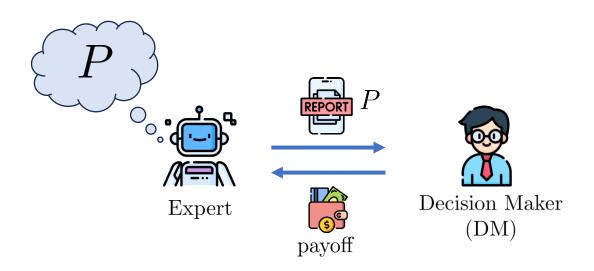
Impossibility results on IP scoring rules (Seidenfeld 2012, Mayo-Wilson 2015 and Schoenfield, 2017)

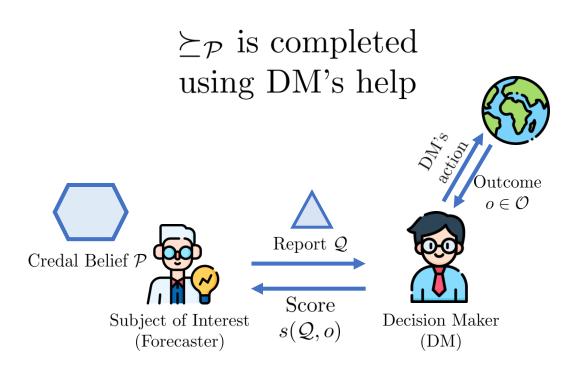


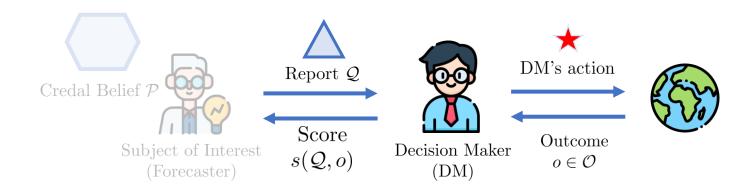
$$\{\mathbb{E}_{o\sim p}[s(\mathcal{Q}, o)]\}_{p\in\mathcal{P}} \quad \begin{array}{c} ????\\ Q\succeq_{\mathcal{P}} Q'\\ \succeq_{\mathcal{P}} \text{ is incomplete} \end{array}$$

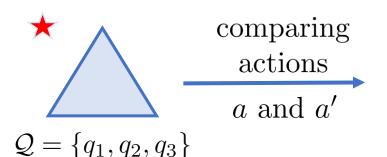


For any belief $\mathcal{P} \in 2^{\Delta(\mathcal{O})}$ the only proper scoring rule $s: 2^{\mathcal{O}} \times \mathcal{O} \to \mathbb{R}$ is for a $k \in \mathbb{R}$, $s(\mathcal{Q}, o) = k$ for all $Q \in 2^{\Delta(\mathcal{O})}$









$$\mathbb{E}_{q_1}[u(a,o)] \ge \mathbb{E}_{q_1}[u(a',o)]$$

$$\mathbb{E}_{q_2}[u(a,o)] \ge \mathbb{E}_{q_2}[u(a',o)]$$
Aggregation ρ

Credal Belief
$$\mathcal{P}$$

Score

Subject of Interest (Forecaster)

Score

 $s(\mathcal{Q}, o)$

Decision Maker

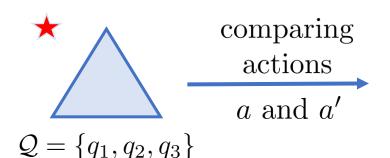
 $o \in \mathcal{O}$

Outcome

 $o \in \mathcal{O}$

 $\mathbb{E}_{q_3}[u(a,o)] \leq \mathbb{E}_{q_3}[u(a',o)]$

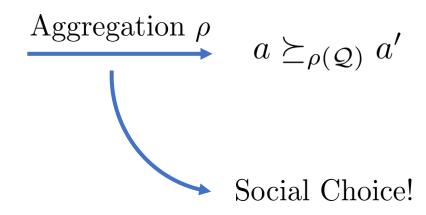
 $a \succeq_{\rho(\mathcal{Q})} a'$

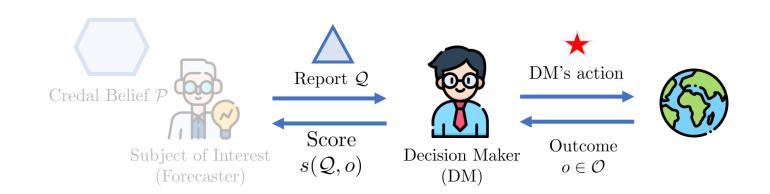


$$\mathbb{E}_{q_1}[u(a,o)] \ge \mathbb{E}_{q_1}[u(a',o)]$$

$$\mathbb{E}_{q_2}[u(a,o)] \ge \mathbb{E}_{q_2}[u(a',o)]$$

$$\mathbb{E}_{q_3}[u(a,o)] \le \mathbb{E}_{q_3}[u(a',o)]$$





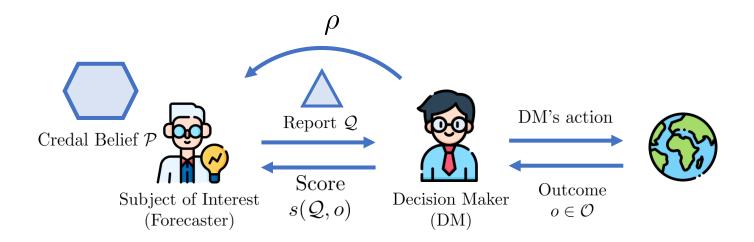
$$\mathcal{Q} \succeq_{p_1} \mathcal{Q}'$$

$$\mathcal{Q} \succeq_{p_2} \mathcal{Q}'$$

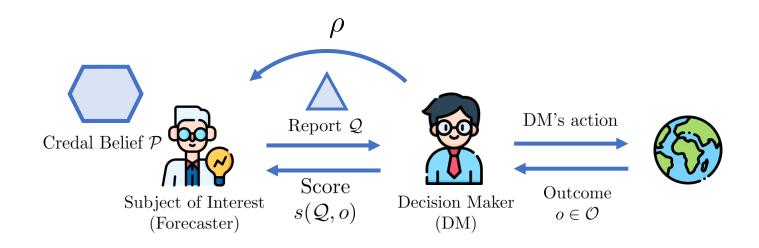
$$\mathcal{Q} \succeq_{p_3} \mathcal{Q}'$$

$$\mathcal{Q} \succeq_{p_4} \mathcal{Q}'$$

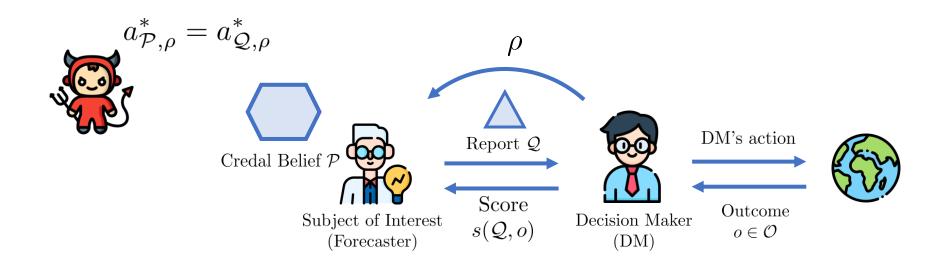
$$\mathcal{Q} \succeq_{p_6} \mathcal{Q}'$$
indecision



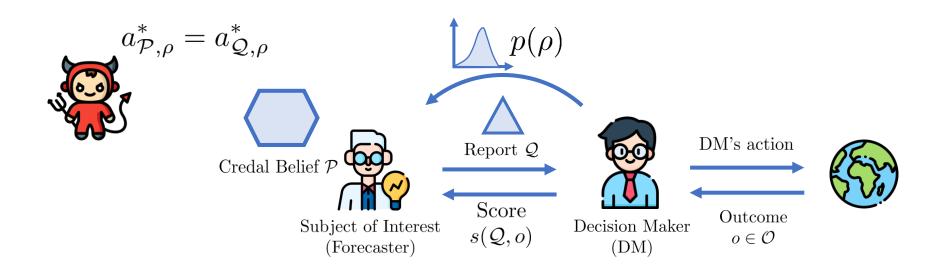
$$s_{\rho}(\mathcal{Q}, o) = ku(a_{\mathcal{Q}, \rho}^*, o) + c \text{ where } k, c \in \mathbb{R}_{\geq 0} \text{ and } a_{\mathcal{Q}, \rho}^* = arg \max_{a \in \mathcal{A}} \rho(\{\mathbb{E}_q[u(a, o)]\}_{q \in \mathcal{Q}}\})$$



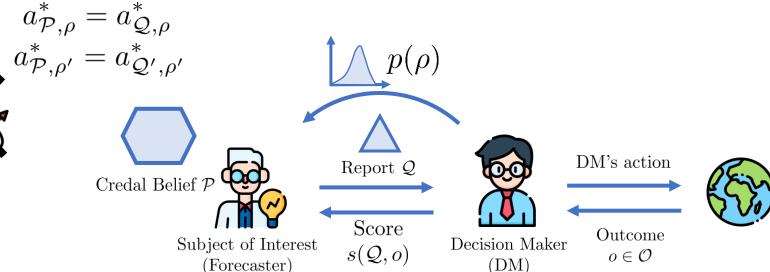
$$s_{\rho}(\mathcal{Q}, o) = ku(a_{\mathcal{Q}, \rho}^*, o) + c \text{ where } k, c \in \mathbb{R}_{\geq 0} \text{ and } a_{\mathcal{Q}, \rho}^* = arg \max_{a \in \mathcal{A}} \rho(\{\mathbb{E}_q[u(a, o)]\}_{q \in \mathcal{Q}}\})$$



$$s_{\rho}(\mathcal{Q}, o) = ku(a_{\mathcal{Q}, \rho}^*, o) + c \text{ where } k, c \in \mathbb{R}_{\geq 0} \text{ and } a_{\mathcal{Q}, \rho}^* = arg \max_{a \in \mathcal{A}} \rho(\{\mathbb{E}_q[u(a, o)]\}_{q \in \mathcal{Q}}\})$$



$$s_{\rho}(\mathcal{Q}, o) = ku(a_{\mathcal{Q}, \rho}^*, o) + c \text{ where } k, c \in \mathbb{R}_{\geq 0} \text{ and } a_{\mathcal{Q}, \rho}^* = arg \max_{a \in \mathcal{A}} \rho(\{\mathbb{E}_q[u(a, o)]\}_{q \in \mathcal{Q}}\})$$



Strictly proper IP scoring rule

Theorem: s_{ρ} is strictly proper for $p(\rho)$ with full support.

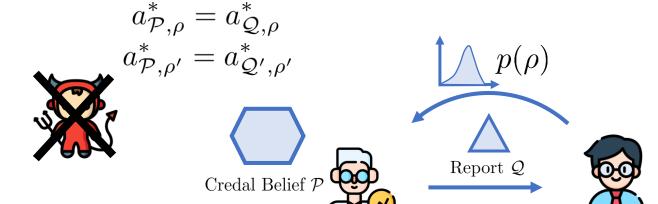
$$s_{\rho}(\mathcal{Q}, o) = \begin{cases} k_{\rho} u(a_{\rho, \mathcal{Q}}^*, o) + c_{\rho} & \text{if } p(\rho) > 0\\ \Pi_{o}(\mathcal{Q}) & \text{if } p(\rho) = 0 \end{cases}.$$

Decision Maker

(DM)

Score

 $s(\mathcal{Q}, o)$



Subject of Interest

(Forecaster)

By not telling which assignment counts for the final grade. I can make students do all of them.

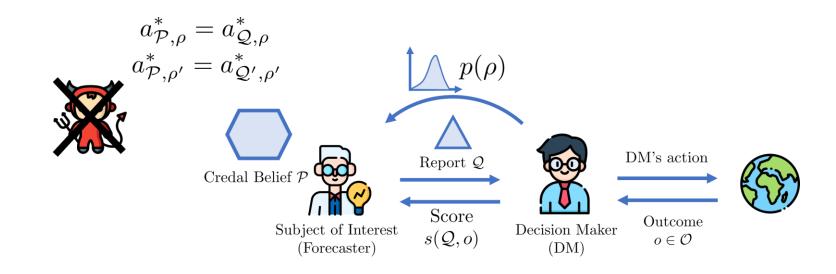
DM's action

Outcome

 $o \in \mathcal{O}$

Conclusion

- 1. Allow experts and algorithms to say "I don't know exactly, but it's between a and b"
- 2. Design of systems that explicitly embrace—not suppress—epistemic uncertainty.
- 3. Honest communication of uncertainty for trustworthy decisions.



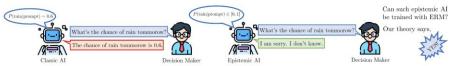
Come visit our poster

Truthful Elicitation of Imprecise Forecasts

Anurag Singh 1 Siu Lun Chau 2 Krikamol Muandet

³Rational Intelligence Lab, CISPA Helmholtz Center for Information Security, Germany ²Nanyang Technologocial University, Singapore

Our Motivation: Can we achieve epistemic AI with Empirical Risk Minimisation (ERM)?



1. Introduction

What's an Imprecise Forecaster? A forecaster is imprecise if their belief can be expressed

Credal Sets: A closed and convex set of probabilities $P \subseteq \Delta(O)$ is called a credal set. For rational decision-making, imprecision in probability is equivalent to credal sets.

Scoring Rules: incentivise a forecaster to truthfully report their probability assessments.

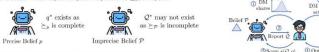
Precise Scoring Rule $s:\Delta(\mathcal{O})\times\mathcal{O}\to\mathbb{R}$ Imprecise Scoring Rule $s:2^{\Delta(\mathcal{O})}\times\mathcal{O}\to\mathbb{R}$

What does incentivising truthfulness mean? Let $\mathcal{P}\subseteq\Delta(\mathcal{O})$ be the true belief of an imprecise forecaster. A report $Q \subseteq \Delta(\mathcal{O})$ is truthful if $Q \simeq \mathcal{P}$. Where \simeq means equivalent credal sets for an imprecise forecaster

orecaster's Belief	Communication	Scoring Rule
Precise	53	Strictly Proper
mprecise	-	Impossible
	ρ	Proper
	$p(\rho)$	Strictly-Proper

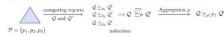
2. Why eliciting imprecise forecasts needs decision maker (DM)?

The forecaster needs help to complete the preference (\succeq_P) on reports.



Theorem: Naive extension of precise scoring rules to imprecise forecasts is impossible.

Aggregation Function: Combines multiple preferences into a single preference.



DM shares ρ with the forecaster

Taliored Scoring Rules: Allow us to parameterise the IP scoring rule $s_{\rho}: 2^{\Delta(\mathcal{O})} \to \mathbb{R}$ with ρ as share of DM's utility $u : A \times O \rightarrow \mathbb{R}$ over actions A.

 $s_{\rho}(\mathcal{Q},o) = ku(a_{\rho,\mathcal{Q}}^{\star},o) + c \quad \text{where } k,c \in \mathbb{R}_{\geq 0} \quad \text{ and } a_{\rho,\mathcal{Q}}^{\star} = \arg\max_{s} \rho(\{\mathbb{E}_q[u(a,o)]\}_{q \in \mathcal{Q}})$

Proposition: All Imprecise scoring rules s_{ρ} are proper for any aggregation rule ρ

3. Connection to Social Choice Theory

Axiomatisation of ρ: When interpreting IP as a "collective" report of precise probabilities, a social choice perspective naturally emerges for the downstream DM.

Lemma: Let s_p be a tailored scoring rule. Then, the following holds:

- 1. s_p is strictly proper for precise distributions if and only if $a_q^* := \arg\max_{a \in A} \mathbb{E}_q[u(a,o)]$ is a unique maximiser for all $q \in \Delta(\mathcal{O})$
- s_ρ is not strictly proper, for any Pareto efficient ρ.

4. Characterisation of the strictly proper scoring rule

The DM shares a distribution $p(\rho)$ for truthful elicitation. Then the expected utility for forecast Q with belief $\mathcal P$ is

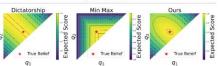
$$V_{p(\rho)}^{p}(Q) := \mathbb{E}_{\rho \sim p(\rho)} [\rho | \{\mathbb{E}_{p} [s_{\rho}(Q, o)]\}_{p \in P}]|.$$

Strict Properness: A scoring rule is said to be strictly proper if for all P, $V_{w[a]}^{P}(P) > V_{w[a]}^{P}(Q)$ for all Q such that $P \neq Q$.

Main Theorem: (Strictly proper IP tailored scoring rules) An IP scoring rule s is strictly proper if $p(\rho)$ is a distribution with full support for the class of linear aggregations of ρ . Then for any $k_p, c_p \in \mathbb{R}_{\geq 0}$ and an arbitrary function $\Pi : 2^{\Delta(\mathcal{O})} \to \mathbb{R}$, the score is defined as

$$s_{\rho}(Q, o) = \begin{cases} k_{\rho}u(a_{\rho,Q}^*, o) + c_{\rho} & \text{if } p(\rho) > 0 \\ \prod_{\rho}(Q) & \text{if } p(\rho) = 0 \end{cases}$$

5. Simulation



Reporting the true belief uniquely maximizes the expected score. We conduct a simulation with a binary outcome (e.g., chance of rain tomorrow) for the true belief P = [0.4, 0.6]. The forecaster reports an interval $[q_1, q_2]$. For our implementation, we consider A = [0, 1]

Scan to check out our paper!

16

https://arxiv.org/pdf/2503.16395 Rational Intelligence Lab anurag.singh@cispa.de