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What is an imprecise forecaster?
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What is an imprecise forecaster?
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What is an imprecise forecaster?
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What is an imprecise forecaster?

convex hull
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Credal set of an imprecise forecast

closed convex hull
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Why do we care about credal sets?

GNG | Om

Can we train predictors that generalise - —
for all downstream decision makers 7 ey Y 9

~ - -
Yes, with a credal set of models. £ 1 q

Learner Operators

Institutional Separation

Domain Generalisation via Imprecise Learning

ICML

Intfernational Conference
On Machine Learning

Anurag Singh' Siu Lun Chau' Shahine Bouabid?> Krikamol Muandet '

Abstract (LLM) that surpass human-level generalisation capabilities .
. in specific domains Appeared 11 ICML 2024
Out-of-distribution (OOD) generalisation is chal- ' )
lenging because it involves not only learning from Despite notable achievements, these systems may catas- as Spothght
empirical data, but also deciding among various trophically fail when operated on out-of-domain (OOD) 5
notions of generalisation, e.g., optimising the data because theoretical guarantees for their generalisation
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Abstracting the same question

What loss to use in
ERM to obtain the
credal set of models.

Wait....

Was this not impossible?

The impossibility is only for the
real-valued scoring rules! Ours is
random
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Abstracting the same question

What loss to use in
ERM to obtain the
credal set of models.

Wait....

Was this not impossible?

The impossibility is only for the
real-valued scoring rules! Ours is Our Contributions:

random
B i Formalise the role of decision maker in

imprecise forecast elicitation.

Truthful Elicitation of Imprecise Forecasts

O Circumvent prior impossibility results to
propose a strictly proper randomised
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What is Elicitation
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What is Elicitation
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What is Elicitation

A payoff mechanism performs truthful
elicitation if it can incentivise the expert

P
>
‘_='[ \ <

Expert Decision Maker

© (DM)
payoff

to report their true belief.

o

... In other words, speaking truth is dominant strategy for expert.



Applications of truthful elicitation
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ML: Empirical Risk Minimisation
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Truthful elicitation of precise forecasts
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Elicitation of precise forecasts ignores the DM!



Truthful elicitation of imprecise forecasts
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Truthful elicitation of imprecise forecasts
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Impossibllity results on IP scoring rules

(Seidenfeld 2012, Mayo-Wilson 2015 and Schoenfield, 2017)
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Truthful elicitation of imprecise forecasts
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For any belief P € 22(9) the only proper scoring rule
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Truthful elicitation of imprecise forecasts
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What is the exact form of this help?
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What is the exact form of this help?
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What is the exact form of this help?

* comparing Eq, [u(a, 0)] > Eqy, [u(a’, 0)] A ;
: ggregation
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Social Choice!
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What is the exact form of this help?
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IP Scoring Rules: How to score with a DM

35(Q.0) = ku(a}y,.0) + ¢ where k,c € Rsg and 0, = argmax p({Eq[u(a, 0)] Fgea )

Proposition: s, is proper for all p.

0

D Report Q DM’s action
Credal Belief P > > -
Wy - < 0

Score
Subject of Interest Decision Maker ~ OUtoome
s(Q, o) o€ O

(Forecaster) (DM)
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IP Scoring Rules: How to score with a DM

35(Q.0) = ku(a}y,.0) + ¢ where k,c € Rsg and 0, = argmax p({Eq[u(a, 0)] Fgea )

Proposition: s, is proper for all p.
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Strictly proper IP scoring rule

Theorem: s, is strictly proper for p(p) with full support.

S 0) = ku(PQ’)'I'Cp if p(p) >0
A& {HO(Q) if p(p) =0

% By not telling which assignment
a’P,p = a9 p

counts for the final grade. I can
Clp,p = CLQr,p ‘ / \ p make students do all of them.
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Conclusion

1. Allow experts and algorithms to say “I don’t know exactly, but it’s between a and b”

2. Design of systems that explicitly embrace—not suppress—epistemic uncertainty.

3. Honest communcation of uncertainty for trustworthy decisions.
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Our Motivation: Can we achieve epistemic Al with Empirical Risk Minimisation (ERM)?

n Maker

1. Introduction

What's an Imprecise Forecaster? A forecaster is imprecise if their
as a scl of distributions P € A(O)

f can be expressed

).8)

Can such epistemic Al
be trained with ERM?

T Our theory says,
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- ——

I am sorry. 1 don't know.
AN 683

Epistemic Al Decision Maker

3. Connection to Social Choice Theory

Axiomatisation of p: When interpreting IF
a social choice perspective nalurally emerge
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Credal Sets: A closed a onvex set of probabilities P € A(Q) is called 3 credal set. For

rational decision-making, imprecision in probability is equivalent to credal sets
o Y
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Scoring Rules: incentivise a forecaster to truthfully report their prot
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What does incentivising truthfulness mean? et P C A(Q) be the true belisf of an
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2, Why eliciting imprecise forecasts needs decision maker (DM)?
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Lemma: Let s, be a tailored scoring rule. Then, the following holds
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is a unique maximiser for all g € A(O)
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4. Characterisation of the strictly proper scoring rule
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5. Simulation
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